炼数成金 门户 商业智能 芯片 查看内容

英特尔研发自我学习芯片Loihi:我们正在尝试复制大脑!

2017-10-11 14:28| 发布者: 炼数成金_小数| 查看: 8129| 评论: 0|原作者: Michael Mayberry 博士|来自: 机器之心
摘要: 能听、能说、能读、能写……人工智能要掌握如此多项技能必须拥有高效的计算力支撑。现在,英特尔正在研发新一代人工智能芯片,集成超过 13 万个神经元和 1.3 亿个突触,用复制神经的方式进行运算和思考,让创新科技 ...
网络 模型 机器学习 人工智能 芯片
能听、能说、能读、能写……人工智能要掌握如此多项技能必须拥有高效的计算力支撑。现在,英特尔正在研发新一代人工智能芯片,集成超过 13 万个神经元和 1.3 亿个突触,用复制神经的方式进行运算和思考,让创新科技开创人工智能新纪元。
英特尔公司全球副总裁兼英特尔实验室研究主任 Michael Mayberry 博士

未来,我们将做出更快、更高效的复杂决策,社会和行业问题甚至可以通过自我学习获得解决;未来,使用图像识别应用的设备可以分析街道摄像头画面,并快速地识别失踪和拐卖人口;未来,红绿灯可以智能地根据车流和交通情况调节时间,减少交通拥堵,让街道更畅通;未来,机器人将具备更强的自主性,并且其能效比将实现前所未有地提高。

我们对于大量动态的、非结构化的自然数据的收集、分析和决策的日益增长的需求,正在驱动对于强大的计算力逐渐增长的需求,这一需求或许已经超过了传统 CPU 或者 GPU 计算力增长的速度。为了让科技创新与时代发展的速度保持一致,英特尔在过去六年中一直在致力于研究特定架构的研发来加速传统 IT 架构变革。例如最近,英特尔正大力投入人工智能和神经元计算的研发。

我们在神经元计算领域的工作一开始建立在与加利福尼亚理工学院教授 Carver Mead 的合作之上,Carver 教授在半导体设计领域享有盛名。芯片科学、物理学和生物学的结合为新想法的诞生提供了新的土壤。这一想法简单,但具有革命性:依照人类大脑开发机器。这一领域的研究逐渐获得了更多学科的支持和合作。


作为英特尔研究院工作的一部分,英特尔发布了其第一款代号为 Loihi 的自我学习神经元芯片,通过基于环境的各种反馈学习模式来模拟大脑的功能。这能利用数据来学习和推理的高效芯片,能实现自我进化,也不需要以传统的方式进行训练,而是使用异步脉冲的方式进行计算。

我们相信,AI 正处在生命中的婴儿期,更多类似 Loihi 这样的全新架构和研究方法将不断涌现,并将拓展 AI 的应用领域。大脑的神经网络依赖于神经脉冲或者突触的信息,人类脑海中和现实中的自主行为,也正是起源于大脑神经网络不同区域间的协作和竞争。

通过大量的训练,依赖机器学习深度学习模型已经在认知层面上取得了重大突破。然而,机器学习依然有它的弊端。如果不提前预设好特定的元素、解决方案以及场景作为训练模型,机器学习的适用性并不尽如人意。

相较于机器学习,自我学习型芯片的潜力是不可限量的。我们以心率监测为例:一个人的心率会根据不同的状态而改变,在慢跑后、餐后或睡前,人的心率往往会有不同的变化。神经计算系统将会在变化多端的心率数据中,自行辨别出一个「正常」心率,从而,系统便可以根据这个模型持续监测心率。这意味着,机器学习系统可以为每个人量身定制不同的算法


这套逻辑同样适用于其他场景。例如网络安全。系统会在日常监测中自动辨别出一个「正常」的数据流量,当数据发声泄露时,数据量会发生异变,这种情况下,神经计算系统将会及时辨认出这种数据波动,为网络安全保驾护航。

推出 Loihi 实验芯片
正处在研发阶段的英特尔 Loihi 神经元芯片通过神经元之间的脉冲模式进行数据传输,完全模仿了人类大脑的功能,从而赋予芯片从环境反馈中「自我学习」的能力。神经形态芯片模型的灵感来自于神经元通信和学习的方式,利用了可根据时间调节的脉冲和塑料触突。基于模式和关联,这将帮助计算机实现自组织,做出决策。

Loihi 芯片提供了非常灵活的片上学习能力,将训练和推理整合至同一块芯片上。这帮助机器实现自动化,实时调整,而无需等待来自云计算平台的下一次信息更新。研究人员已证明,与其他典型的脉冲神经网络相比,在解决 MNIST 数字识别问题时,以实现一定准确率所需要的总操作数来看,Loihi 芯片学习速度提高了 100 万倍。

在优化汽车和工业应用,以及个人机器人方面,这款测试芯片的自学能力带来了巨大潜力,例如识别汽车或自行车的运动。在非结构化环境中,这些应用可以受益于自动化操作和持续学习。

此外,与通常用于训练人工智能系统的芯片相比,Loihi 芯片的能效提升了 1000 倍。

2018 年上半年,英特尔将与部分大学和研究机构分享 Loihi 测试芯片。

技术亮点
Loihi 自我学习神经元芯片的技术亮点包括:
全异步神经形态多核心网络,支持多种稀疏、分层和循环神经网络拓扑结构。每个神经元可以与成千上万个其他神经元通信。
每个神经形态核心都包含一个学习引擎,在操作中可以通过编程去适配网络参数,支持监督学习、无监督学习、强化学习和其他学习范式。
芯片的制造采用了英特尔 14 纳米工艺。
总共提供了 13 万个神经元和 1.3 亿个触突。
对于多种算法的开发和测试,实现了极高的算法效率。这些算法包括路径规划、约束满足、稀疏编码、字典学习,以及动态模式学习和适配。

在计算机和算法创新的推动下,人工智能的变革性力量预计将给社会带来重大影响。今天,英特尔仍在继续驱动摩尔定律的发展,并且持续发挥自身硬件制造行业领导者的优势,为用户带来全新的英特尔至强可扩展处理器、英特尔 Nervana 技术、英特尔 Movidius 技术、以及英特尔 FPGAs 技术。这些技术,都将赋予人工智能开发向云端和数据端迁移的能力。

在人工智能领域,通用计算技术和用户端的软、硬件都将大有作为。被广泛用于科研计算的英特尔至强融核处理器已经能够帮助解决大量的科学难题。Movidius 神经计算棒也是先前训练模型的 1 瓦特部署案例。

在人工智能工作负载日益趋向多元化和复杂化的今天,英特尔的产品将帮助人工智能技术无限接近主要计算体系结构的边界,并促成颠覆性解决方案。展望未来,英特尔相信,通过模仿大脑工作的方式,神经计算将为我们带来百亿亿次级别的计算量。

我们真诚地希望这次里程碑似的发布能够引起社会广泛的关注,因为英特尔正在将神经计算等前瞻性概念推向主流科研领域,这对于世界未来 50 年的经济发展有着重要的意义。在神经计算的帮助下,未来,一切皆有可能!

英特尔在计算架构创新发展上的愿景始终坚定不移。并且从今天开始,英特尔已经开始打造未来的计算。

欢迎加入本站公开兴趣群
商业智能与数据分析群
兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识
QQ群:81035754

鲜花

握手

雷人

路过

鸡蛋

相关阅读

最新评论

热门频道

  • 大数据
  • 商业智能
  • 量化投资
  • 科学探索
  • 创业

即将开课

  GMT+8, 2017-10-22 14:18 , Processed in 0.125790 second(s), 26 queries .